FlamesCalgary Flames
6-10-0, 12pts · 13th in Western Conference
Player Stats
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team Name# POS GP G A P +/- PIM PIM5 HIT SHT OSB OSM SHT% SB MP PPG PPA PPP PKG PKA PKP PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS
1Nicolas RoyFlamesFlames10C/RW1678151951749203414.29%619.:.44224101531154.29%39600000.9500
2Troy TerryFlamesFlames19C/LW/RW168513-5001053243415.09%219.:.0131400021151.85%2700000.8501
3Tyson FoersterFlamesFlames71C/RW165813-640385816388.62%119.:.16145000242054.79%7300000.8401
4Barrett HaytonFlamesFlames27C/LW163912-580265112445.88%719.:.29033000330054.34%39200000.7701
5Kaiden GuhleFlamesFlames21D162911-8140312071310.00%2223.:.4912300040000.00%000000.5800
6Bobby BrinkFlamesFlames10RW162810-42055518333.64%215.:.4512300000058.33%1200000.7901
7Luke EvangelistaFlamesFlames77RW164610-1120133692411.11%116.:.01202000121060.00%1500000.7800
8Nick PerbixFlamesFlames48D162810-36022165512.50%2320.:.4303301143000.00%000000.6000
9Dawson MercerFlamesFlames91C/RW14718-119593553420.00%619.:.33112000400144.59%30500000.5800
10Caleb JonesFlamesFlames82D16167-11152783612.50%1115.:.290000009000.00%000000.5600
11Joel FarabeeFlamesFlames86LW16347-160264511296.67%315.:.48011000140061.90%2100000.5500
12Tanner JeannotFlamesFlames94LW/RW16156-3361048274153.70%013.:.2400000000025.00%1200000.5600
13Juuso ValimakiFlamesFlames14D16145-1401914557.14%2515.:.110000002000.00%000000.4100
14Andrew PeekeFlamesFlames26D16044-31404816460.00%2919.:.0700001143000.00%000000.2600
15Curtis LazarFlamesFlames17C/LW/RW16123-52014155126.67%108.:.2900000030048.34%15100000.4400
16Michael CarconeFlamesFlames53C/LW/RW16213-32061231316.67%106.:.3500000000030.77%1300000.5700
17Boris KatchoukFlamesFlames14LW15022-44059590.00%006.:.3400000000033.33%900000.4111
18Jacob TroubaFlamesFlames8D16101-919537741414.29%2021.:.5800000047000.00%000000.0600
19Hudson FaschingFlamesFlames20RW2000-10012010.00%010.:.3100000000037.50%2400000.0000
20Sebastien AhoFlamesFlames27D100000000000.00%000.:.000000000000.00%000000.0000
Team Total or Average2885090140-63172304025281603699.47%16016:211119301233715350.97%145000000.5915
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Mitchell WeeksFlamesFlames935085.3%4.994934041278010100.0%588010
2James ReimerFlamesFlames623091.3%3.2030000161830000.0%063101
3Ethan LangeneggerFlamesWranglers (CGY)312088.9%3.911690011990000.0%025100
Team Total or Average1558087.6%4.3179340574610101.00051411111
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT GF% SH% SV% PDO PDOBRK
1FlamesRangers1010000058-300.00058130022103313515040610255360.00%5180.00%131359352.78%26956247.86%15728455.28%211323714722.2%15.2%80.0%95.2FUN
2FlamesFlyers1100000043121.000471100202021777029129226233.33%20100.00%031359352.78%26956247.86%15728455.28%221522714640.0%19.0%89.7%108.7FUN
3FlamesJets2010100059-420.500591400013159211720178222942200.00%12375.00%031359352.78%26956247.86%15728455.28%45305015251145.5%8.5%88.5%96.9Unlucky
4FlamesSenators1010000057-200.0005813001220389191005011817000.00%440.00%031359352.78%26956247.86%15728455.28%211425713662.5%13.2%86.0%99.2FUN
5FlamesCanadiens1100000031221.000369003000341210120278629300.00%30100.00%031359352.78%26956247.86%15728455.28%241621813675.0%8.8%96.3%105.1DULL
6FlamesMaple Leafs1000001043121.00045900102136781610301035197114.29%4175.00%031359352.78%26956247.86%15728455.28%251725914660.0%11.1%90.0%101.1FUN
7FlamesBlues1010000035-200.000369001110317121203282244250.00%110.00%031359352.78%26956247.86%15728455.28%201424714620.0%9.7%84.4%94.1FUN
8FlamesBlackhawks1100000032121.000369000120391012170421410312150.00%5180.00%031359352.78%26956247.86%15728455.28%241522713666.7%7.7%95.2%102.9DULL
9FlamesBlue Jackets1100000043121.000481200202030912903171425000.00%7185.71%031359352.78%26956247.86%15728455.28%211423714666.7%13.3%90.3%103.7FUN
10FlamesPredators1010000034-100.000369002010421410180357624200.00%3166.67%031359352.78%26956247.86%15728455.28%221523813650.0%7.1%88.6%95.7Unlucky
11FlamesOilers1010000012-100.000123000010361571404071032200.00%50100.00%031359352.78%26956247.86%15728455.28%201226712533.3%2.8%95.0%97.8DULL
12FlamesCanucks1010000034-100.000358001200261574029116342150.00%3233.33%031359352.78%26956247.86%15728455.28%181127814650.0%11.5%86.2%97.7FUN
13FlamesMammoth1010000025-300.00024600200036198902414220100.00%000.00%031359352.78%26956247.86%15728455.28%191326713728.6%5.6%79.2%84.7Unlucky
14FlamesGolden Knights20200000612-600.00061016002310672123230732329586116.67%7271.43%031359352.78%26956247.86%15728455.28%42265014271333.3%9.0%83.6%92.5FUN
_Vs Division404000001018-800.0001017270035201295137410142414512410220.00%15473.33%031359352.78%26956247.86%15728455.28%815010431542536.4%7.8%87.3%95.1Unlucky
_Vs Conference1018010002643-1740.2002648740088913361229611713531069426521523.81%361072.22%031359352.78%26956247.86%15728455.28%214138251781336438.9%7.7%87.8%95.6Unlucky
_Since Last GM Reset16410010105168-17120.375519014100191218252817915718611560160176402421126.19%611772.13%131359352.78%26956247.86%15728455.28%35223039412521910544.0%9.7%87.9%97.5FUN
Total16410010105168-17120.375519014100191218252817915718611560160176402421126.19%611772.13%131359352.78%26956247.86%15728455.28%35223039412521910544.0%9.7%87.9%97.5FUN

Puck Time
Offensive Zone 22
Neutral Zone 13
Defensive Zone 24
Puck Time
Offensive Zone Start 593
Neutral Zone Start 284
Defensive Zone Start 562
Puck Time
With Puck 28
Without Puck 31
Faceoffs
Faceoffs Won 739
Faceoffs Lost 700
Team Average Shots after League Average Shots after
1st Period 11.210.69
2nd Period 21.021.35
3rd Period 32.632.03
Overtime 33.332.64
Goals in Team Average Goals after League Average Goals after
1st Period 1.21.08
2nd Period 1.92.13
3rd Period 3.12.97
Overtime 3.23.07
Even Strenght Goal 39
PP Goal 11
PK Goal 1
Empty Net Goal 0
Home Away
Win 42
Lost 37
Overtime Lost 00
PP Attempt 42
PP Goal 11
PK Attempt 61
PK Goal Against 17
Home
Shots For 33.0
Shots Against 35.0
Goals For 3.2
Goals Against 4.3
Hits 25.1
Shots Blocked 10.0
Pim 11.0