BluesSt. Louis Blues
9-3-3, 21pts · 5th in Western Conference
Player Stats
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team Name# POS GP G A P +/- PIM PIM5 HIT SHT OSB OSM SHT% SB MP PPG PPA PPP PKG PKA PKP PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS
1Auston MatthewsBluesBlues34C/LW15915245401387265810.34%221.:.0536900062054.38%44500001.5212
2Seth JarvisBluesBlues24C/LW/RW1581018360226073213.33%823.:.34156000422062.50%2400001.0200
3Robert ThomasBluesBlues18C/RW1551015-3001046173510.87%019.:.5422400000051.09%32100001.0002
4Elias PetterssonBluesBlues40C/LW/RW153912340183414308.82%019.:.4111200020054.17%9600000.8102
5Matthew TkachukBluesBlues19LW/RW1555109953948162910.42%120.:.2902200041054.17%2400000.6500
6Moritz SeiderBluesBlues53D153710622049154920.00%1323.:.4413400032000.00%000000.5600
7Logan CooleyBluesBlues92C/LW154590952636143511.11%219.:.0021300000076.92%2600000.6300
8Lane HutsonBluesBlues48D151672401217495.88%1421.:.481010002100.00%000000.4300
9Mikhail SergachevBluesBlues98D1525778019249208.33%3224.:.1810100032100.00%000000.3800
10Noel AcciariBluesBlues65C/LW/RW114375007142328.57%008.:.0900000080049.06%5300001.5600
11Sam CarrickBluesBlues25C/RW1515666010921011.11%008.:.49000000170041.58%10100000.9100
12Cole SmithBluesBlues36LW/RW1132579524141921.43%108.:.38000000101040.00%500001.0500
13Ivan ProvorovBluesBlues9D15224155151451014.29%2121.:.3300000035000.00%000000.2500
14Matt CoronatoBluesBlues27LW/RW15033-3000197110.00%110.:.4402200000042.11%1900000.3700
15Simon EdvinssonBluesBlues77D1312311201461416.67%613.:.5911200010000.00%000000.3300
16Adam LowryBluesBlues17C/LW15022-32011171120.00%511.:.23000000470052.28%24100000.2300
17Ryan SuterBluesBlues20D151011001341225.00%2214.:.1900000025000.00%000000.0900
18Will CuylleBluesBlues50LW/RW15011-34025157150.00%108.:.1700000000066.67%300000.1600
19Pavel MintyukovBluesThunderbirds (STL)34D200000000000.00%012.:.480000002000.00%000000.0000
20Dmitri OsipovBluesThunderbirds (STL)0D100000000000.00%000.:.000000000000.00%000000.0000
21Mackie SamoskevichBluesBlues25C/RW700014035350.00%107.:.060000000000.00%100000.0000
Team Total or Average2675292144451082033048414133810.74%13016:391323360002788052.39%135900000.6516
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Igor ShesterkinBluesBlues1282292.9%2.21733022737901083.3%6123301
2Justus AnnunenBluesBlues311188.2%4.0018020121020010.0%0312000
Team Total or Average1593391.9%2.5691422394810110.83361515301
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT GF% SH% SV% PDO PDOBRK
1BluesPenguins1000001032121.00034700110137168106353618200.00%30100.00%030954856.39%28453952.69%11924847.98%271822814860.0%8.1%94.3%102.4DULL
2BluesCapitals1100000041321.0004711003100279810037641811100.00%10100.00%030954856.39%28453952.69%11924847.98%231623713675.0%14.8%97.3%112.1LUCKY
3BluesSabres1010000005-500.000000000000321013903710625200.00%30100.00%030954856.39%28453952.69%11924847.98%22142371460.0%0.0%86.5%86.5Unlucky
4BluesRed Wings2200000081741.00081321011520551421200562717436233.33%50100.00%030954856.39%28453952.69%11924847.98%49334314261485.7%14.5%98.2%112.8LUCKY
5BluesBlackhawks1100000051421.0005101500104033961802636313266.67%3166.67%030954856.39%28453952.69%11924847.98%2517187157100.0%15.2%96.2%111.3LUCKY
6BluesBlue Jackets1000010045-110.5004610000310288812046149263266.67%2150.00%030954856.39%28453952.69%11924847.98%211325714733.3%14.3%89.1%103.4FUN
7BluesWild1000010034-110.5003690010204161219435811188337.50%2150.00%030954856.39%28453952.69%11924847.98%27182281370.0%7.3%88.6%95.9Unlucky
8BluesOilers1010000047-300.0004610101210361512903113621100.00%3233.33%030954856.39%28453952.69%11924847.98%251721612644.4%11.1%77.4%88.5FUN
9BluesFlames1100000053221.0005101500302032912110311583111100.00%4250.00%030954856.39%28453952.69%11924847.98%241720614780.0%15.6%90.3%105.9FUN
10BluesCanucks2010100066020.5006101600032167152823165131434300.00%7271.43%030954856.39%28453952.69%11924847.98%46314614271360.0%9.0%90.8%99.7FUN
11BluesKings1000000145-110.50048120022003971513730106265240.00%30100.00%030954856.39%28453952.69%11924847.98%261724714728.6%10.3%83.3%93.6FUN
12BluesMammoth1100000041321.000461000211028135100306817400.00%4175.00%030954856.39%28453952.69%11924847.98%2516217137100.0%14.3%96.7%111.0LUCKY
13BluesStars1100000030321.00036901201029101180232922400.00%20100.00%030954856.39%28453952.69%11924847.98%2719187137100.0%10.3%100.0%110.3LUCKY
_Vs Division43000100156970.875152843016180131383455411419348819526.32%11372.73%030954856.39%28453952.69%11924847.98%106728130552976.9%11.5%94.7%106.2LUCKY
_Vs Conference9420110134277120.667346296111281313058410111112271706820029827.59%28967.86%030954856.39%28453952.69%11924847.98%229155195651246459.1%11.1%90.0%101.2FUN
_Since Last GM Reset157301211534112210.700539214512171816248414115917218482130110330431330.23%421076.19%030954856.39%28453952.69%11924847.98%37325333311120810756.3%11.0%91.5%102.4LUCKY
Total157301211534112210.700539214512171816248414115917218482130110330431330.23%421076.19%030954856.39%28453952.69%11924847.98%37325333311120810756.3%11.0%91.5%102.4LUCKY

Puck Time
Offensive Zone 24
Neutral Zone 13
Defensive Zone 22
Puck Time
Offensive Zone Start 548
Neutral Zone Start 248
Defensive Zone Start 539
Puck Time
With Puck 31
Without Puck 29
Faceoffs
Faceoffs Won 712
Faceoffs Lost 623
Team Average Shots after League Average Shots after
1st Period 9.410.69
2nd Period 20.021.35
3rd Period 31.532.03
Overtime 32.732.64
Goals in Team Average Goals after League Average Goals after
1st Period 1.11.08
2nd Period 2.32.13
3rd Period 3.42.97
Overtime 3.53.07
Even Strenght Goal 39
PP Goal 13
PK Goal 0
Empty Net Goal 1
Home Away
Win 45
Lost 21
Overtime Lost 21
PP Attempt 43
PP Goal 13
PK Attempt 42
PK Goal Against 10
Home
Shots For 32.3
Shots Against 32.1
Goals For 3.5
Goals Against 2.7
Hits 22.0
Shots Blocked 8.7
Pim 7.3