StarsDallas Stars
5-8-1, 11pts · 14th in Western Conference
Player Stats
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team Name# POS GP G A P +/- PIM PIM5 HIT SHT OSB OSM SHT% SB MP PPG PPA PPP PKG PKA PKP PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS
1Kirill MarchenkoStarsStars86LW/RW146915120266411459.38%221.:.0800000031036.00%2500001.0100
2Wyatt JohnstonStarsStars53C145712220127113577.04%324.:.21112000480049.90%51100010.7000
3Brock BoeserStarsStars6RW1465115802729121920.69%220.:.2501100000130.43%2300000.7700
4Shayne GostisbehereStarsStars44D141910-58014186135.56%2722.:.141120008100.00%000000.6400
5Logan O'ConnorStarsStars25RW14268-1208239248.70%214.:.10011000441046.15%1300000.8100
6Anders LeeStarsStars27LW14448-11410294611238.70%318.:.1011200080035.14%3700000.6300
7Josh MansonStarsStars42D143477804980937.50%1622.:.5510100036000.00%000000.4400
8Bo HorvatStarsStars14C14347440264210287.14%318.:.29011000221050.00%34000000.5400
9Jakob ChychrunStarsStars26D10167-3401991811.11%1624.:.0000000027000.00%000000.5800
10Michael BuntingStarsStars58LW/RW1415616014269183.85%116.:.1601100000070.59%1700000.5300
11Rasmus AnderssonStarsStars4D13235-340191651912.50%2524.:.0800000036100.00%000000.3200
12Trevor LewisStarsStars61C/RW102352404106820.00%111.:.2900000000048.15%13500000.8700
13Reilly SmithStarsStars19LW/RW6213-12031041020.00%114.:.1800000030030.00%1000000.7000
14William CarrierStarsStars28LW142130100221041020.00%009.:.1400000000057.14%700000.4600
15Colin MillerStarsStars8D81121401561416.67%813.:.340000000000.00%000000.3700
16Ryan GravesStarsStars33D140111801010230.00%1313.:.4500000026000.00%000000.1000
17Michael PezzettaStarsStars65C/LW14011-480186220.00%006.:.0500000000041.38%5800000.2300
18Matt DumbaStarsStars24D110113100214210.00%315.:.0200000014000.00%000000.1200
19Oskar SundqvistStarsStars70C/RW2000-20002210.00%108.:.3400000000055.17%2900000.0000
20Fraser MintenStarsStars (DAL)93C3000-10030010.00%005.:.2400000000033.33%2400000.0000
21Drew O'ConnorStarsStars18LW/RW14000-540415390.00%208.:.12000000150023.08%1300000.0000
22Ethen FrankStarsStars (DAL)82C700000004030.00%105.:.0600000000055.26%3800000.0000
Team Total or Average24241711122112103404251133119.65%12916:4747110002975148.19%121800010.5500
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Marc-Andre FleuryStarsStars632190.8%3.1736000192060000.0%068110
2Kevin LankinenStarsStars826088.8%3.6447800292590010.0%086000
Team Total or Average1458189.7%3.4483800484650010.00001414110
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT GF% SH% SV% PDO PDOBRK
1StarsHurricanes1010000035-200.000369001110334722034161222000.00%5340.00%024551347.76%25052747.44%12123950.63%201225713660.0%9.1%85.3%94.4FUN
2StarsLightning1010000026-400.000224001010341081604291218100.00%5420.00%024551347.76%25052747.44%12123950.63%221424713650.0%5.9%85.7%91.6Unlucky
3StarsJets1010000026-400.0002460011003079140333427200.00%110.00%024551347.76%25052747.44%12123950.63%241520714728.6%6.7%81.8%88.5Unlucky
4StarsCapitals1010000023-100.0002350000202376100288630300.00%30100.00%024551347.76%25052747.44%12123950.63%191226814640.0%8.7%89.3%98.0Unlucky
5StarsPanthers1000010023-110.50024600002028614803896307114.29%30100.00%024551347.76%25052747.44%12123950.63%231523713725.0%7.1%92.1%99.2DULL
6StarsBlues1010000003-300.00000000000023414502981333200.00%40100.00%024551347.76%25052747.44%12123950.63%18112771360.0%0.0%89.7%89.7Unlucky
7StarsBlue Jackets1100000031221.00034700120026998030102172150.00%000.00%024551347.76%25052747.44%12123950.63%231622713666.7%11.5%96.7%108.2LUCKY
8StarsPredators1100000043121.000459004000361612802912618400.00%3166.67%024551347.76%25052747.44%12123950.63%211425712666.7%11.1%89.7%100.8FUN
9StarsWild1010000035-200.000369102100291071202896174125.00%30100.00%024551347.76%25052747.44%12123950.63%241522713628.6%10.3%82.1%92.5FUN
10StarsOilers1100000031221.0003580021002899100369834200.00%4175.00%024551347.76%25052747.44%12123950.63%2416227137100.0%10.7%97.2%107.9LUCKY
11StarsCanucks1100000062421.00061117001320266137029513213133.33%40100.00%024551347.76%25052747.44%12123950.63%231422713671.4%23.1%93.1%116.2LUCKY
12StarsAvalanche1010000056-100.0005101500122037111412049131027500.00%5180.00%024551347.76%25052747.44%12123950.63%211526712550.0%13.5%87.8%101.3FUN
13StarsKings1010000012-100.00012300100036101790266825200.00%4175.00%024551347.76%25052747.44%12123950.63%221423813650.0%2.8%92.3%95.1DULL
14StarsDucks1100000053221.0005914003020401661803513624200.00%30100.00%024551347.76%25052747.44%12123950.63%221524712662.5%12.5%91.4%103.9LUCKY
_Vs Division514000001423-920.200142539108420155485651016845391221715.88%16381.25%024551347.76%25052747.44%12123950.63%1107212238663239.4%9.0%86.3%95.3FUN
_Vs Conference945000002931-280.44429528110158602858910195029478742262627.69%31583.87%024551347.76%25052747.44%12123950.63%204133215691195950.9%10.2%89.5%99.6FUN
_Since Last GM Reset1458001004149-8110.3934171112101811120429125145159046613011234339410.26%471274.47%024551347.76%25052747.44%12123950.63%3132043381081889350.0%9.6%89.5%99.0FUN
Total1458001004149-8110.3934171112101811120429125145159046613011234339410.26%471274.47%024551347.76%25052747.44%12123950.63%3132043381081889350.0%9.6%89.5%99.0FUN

Puck Time
Offensive Zone 22
Neutral Zone 13
Defensive Zone 24
Puck Time
Offensive Zone Start 513
Neutral Zone Start 239
Defensive Zone Start 527
Puck Time
With Puck 29
Without Puck 30
Faceoffs
Faceoffs Won 616
Faceoffs Lost 663
Team Average Shots after League Average Shots after
1st Period 8.910.69
2nd Period 19.321.35
3rd Period 30.632.03
Overtime 30.632.64
Goals in Team Average Goals after League Average Goals after
1st Period 1.31.08
2nd Period 2.12.13
3rd Period 2.92.97
Overtime 2.93.07
Even Strenght Goal 36
PP Goal 4
PK Goal 0
Empty Net Goal 1
Home Away
Win 41
Lost 44
Overtime Lost 01
PP Attempt 39
PP Goal 4
PK Attempt 47
PK Goal Against 12
Home
Shots For 30.6
Shots Against 33.3
Goals For 2.9
Goals Against 3.5
Hits 24.5
Shots Blocked 9.3
Pim 8.0